GLoG: Laplacian of Gaussian for Spatial Pattern Detection in Spatio-Temporal Data
نویسندگان
چکیده
Boundary detection has long been a fundamental tool for image processing and computer vision, supporting the analysis of static time-varying data. In this work, we built upon theory Graph Signal Processing to propose novel boundary filter in context graphs, having as main application scenario visual spatio-temporal More specifically, equivalent graphs so-called Laplacian Gaussian edge filter, which is widely used processing. The proposed able reveal interesting spatial patterns while still enabling definition entropy time slices. reveals degree randomness slice, helping users identify expected unexpected phenomena over time. effectiveness our approach appears applications involving synthetic real data sets, show that methodology uncover temporal phenomena. provided examples case studies make clear usefulness mechanism support analytic tasks
منابع مشابه
Spatio-Temporal Pattern Detection in Climate Data
In this paper, a unique approach to the problem of spatiotemporal pattern detection is discussed in relation to climate data; this can be understood as discovering dependent climate events that occur over space. An accurate solution in this domain will provide climate scientists with highly valuable data which can be used to improve climate models and add to the knowledge base of climate scienc...
متن کاملDetection of Spatial and Spatio-Temporal Clusters
This thesis develops a general and powerful statistical framework for the automatic detection of spatial and space-time clusters. Our “generalized spatial scan” framework is a flexible, modelbased framework for accurate and computationally efficient cluster detection in diverse application domains. Through the development of the “fast spatial scan” algorithm and new Bayesian cluster detection m...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
Variational Gaussian-process factor analysis for modeling spatio-temporal data
We present a probabilistic factor analysis model which can be used for studying spatio-temporal datasets. The spatial and temporal structure is modeled by using Gaussian process priors both for the loading matrix and the factors. The posterior distributions are approximated using the variational Bayesian framework. High computational cost of Gaussian process modeling is reduced by using sparse ...
متن کاملSpatio-temporal Outlier Detection in Precipitation Data
The detection of outliers from spatio-temporal data is an important task due to the increasing amount of spatio-temporal data available, and the need to understand and interpret it. Due to the limitations of previous data mining techniques, new techniques to detect spatio-temporal outliers need to be developed. In this paper, we propose a spatio-temporal outlier detection algorithm called Outst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Visualization and Computer Graphics
سال: 2021
ISSN: ['1077-2626', '2160-9306', '1941-0506']
DOI: https://doi.org/10.1109/tvcg.2020.2978847